Matière : Mathématique

Niveau: 1APIC

Durée: 6h

Développement et Factorisation

Professeur : AZIZ AIT LYAZID

COMPÉTENCES EXIGIBLES

- Développer le produit d'un nombre et une somme ;
- > Développer le produit d'un nombre et une différence ;
- > Développer le produit de deux sommes ;
- > Développer le produit de deux différences
- Factoriser une expression ;
- > Connaitre les identités remarquables

ORIENTATIONS PEDAGOGIQUES

- > Utilisation de l'expression littérale.
- Reconnaissance de la forme d'une expression algébrique : somme, produit. Développement d'une expression de la forme (a + b) (c + d)
- > -Factorisation d'une expression algébrique dans laquelle le facteur est apparent

EXTENSIONS

- Les équations
- > La proprtionnalité
- **Développement d'expression** (a+b)(c+d)
- > Les identités remarquables
- Factorisation des expressions de genre 3(2x+1)-x(2x+1)

PRE-REQUIS

> Les sommes algébriques

Objectif	Activités	Contenu de cours	Applications
Objectif Simplifier une expression littérale	Activité 1: 1) Calculer les expressions suivantes en remplaçant a ;b ;c par ses valeurs tels que : a=10 ; b=5 ; c=-3 a-c ; ac+b ; a.(c+b) 2) Soit d un nombre décimal. Simplifier les expressions suivantes : A=10+19d+11d-5 B=2d+7-6d+13+d	Contenu de cours I. Expression littérale: Définition: Une expression littérale est une expression mathématique contenant une ou plusieurs lettres qui désignent des nombres Exemple: Simplifier les expressions suivantes: A = (-3) × a + 4 B = 2×a + 3×b + 5×a C = (-5) × x + 3 y D = (-x) + 7×x - 6 Remarque: 4x signifie 4×x, il faut remettre les signes □ ×□ sous entendus lorsque l'on remplace les lettres par des nombres. Quand une même lettre est utilisée plusieurs fois dans une expression littérale, elle désigne toujours le même nombre.	Applications Exercice d'application: Simplifier les expressions suivantes: $A = 5x + 4x$ $B = 9x - 2x$ $C = 6x + x$ $D = 2x + 7x - 5x$ $E = 8xy - 7xy$ $F = 5ab - 9ab + ab$ $G = 18z^2 - 9z^2 + 3z^2$

Objectif	Activités	Contenu de cours	Applications
Développe ment de k(a+b) et k(a-b)	Activité 2: ❖ Activité (1) page 102 (UNIVERS)	II. Développement :1) Produit d'un nombre par une somme :Définition :	Exercice d'application : Développer puis simplifier les expressions suivantes : $A = 5(2x + 4)$ $B = (5x + 7) \times 4$ $C = x(4 + 2x)$ $D = 6x(5 + 3x)$
		Développer c'est transformer un produit en une somme. On utilise pour cela la distributivité de la multiplication par rapport à l'addition.	
		Règle 1 :	E = 3x (x + 5) $F = x (x - 6)$
		a , b et k sont des nombres relatifs.	G = 5 x(x-1)
		On a: $k(a+b) = ka + kb$; $k(a-b) = ka - kb$	$H = x(x^2 - 4)$
		Exemples: On développant les expressions suivantes: $-3(2x + y) = -3 \times 2x - 3 \times y = -6x - 3y$ $4(-x - 4y + 2z) = 4 \times (-x) + 4 \times (-4y) + 4 \times 2z = -4x - 16y + 8z$	

Objectif	Activités	Contenu de cours	Applications
Développe	Activité 3: Activité (2) page 102 (UNIVERS)	2) Produit de deux sommes : Règle 2 :	Exercice d'application :
ment de (a+b)(c+d)	t de	a , b , c et d sont des nombres relatifs. On a : (a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd ❖ Remarque : Pour multiplier une somme par une somme , on multiplie chaque terme de la prmière somme par chaque terme de la deuxième somme. Exemple : Développer l'expression E tels que : E = (2x − 3)(x − 4)	Développer puis simplifier les expressions suivantes : A = (x + 4)(x + 2) B = (x+2)(0,5+x) C = (-2+t)(t+4) D = (2t+5)(5t+1) E = (-4+2a)(-2+5a)

Objectif	Activités	Contenu de cours	Applications
	Sachant que: $(a+b)^2 = (a+b)(a+b)$ Et $(a-b)^2 = (a-b)(a-b)$ Montrer que: $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$ $(a-b)(a+b) = a^2 - b^2$	IV. Les identités remarquables : Règle (4) : a et b sont deux nombres relatifs. $(a+b)^2 = a^2 + 2ab + b^2$ On a : $(a-b)^2 = a^2 - 2ab + b^2$ $(a+b)(a-b) = a^2 - b^2$ Exemples : On développe les expressions suivantes : $A = (x+4)^2$ $B = (y-3)^2$ $C = (m-7)(m+7)$	Exercice d'application: Compléter les égalités suivantes: $(x + 2)^2 = \dots + 4x + \dots$ $(3x - \dots)^2 = \dots - \dots + 25$ $(\dots + 4)^2 = \dots + 12x + \dots$ $(\dots - 7)^2 = 36x^2 - \dots + \dots$ $(\dots - 11)(\dots + 11) = 81a^2 - \dots$ $(\dots + \dots)^2 = x^2 + 8x + 16$